The Buckling Operator: Inverse Boundary Value Problem

نویسندگان

چکیده

In this paper, we consider a zeroth-order perturbation q(x) of the buckling operator Δ2−κΔ, which can be uniquely determined by measuring Dirichlet-to-Neumann data on boundary. We extend conclusion biharmonic to operator, but map given in study is more meaningful and general.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Boundary Value Problems for the Perturbed Polyharmonic Operator

We show that a first order perturbation A(x) · D + q(x) of the polyharmonic operator (−∆), m ≥ 2, can be determined uniquely from the set of the Cauchy data for the perturbed polyharmonic operator on a bounded domain in R, n ≥ 3. Notice that the corresponding result does not hold in general when m = 1.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Inverse boundary value problem for Maxwell equations

We prove a uniqueness theorem for an inverse boundary value problem for the Maxwell system with boundary data assumed known only in part of the boundary. We assume that the inaccessible part of the boundary is either part of a plane, or part of a sphere. This work generalizes the results obtained by Isakov [I] for the Schrödinger equation to Maxwell equations. Introduction. Let Ω ⊂ R be a bound...

متن کامل

Positive Solutions for Integral Boundary Value Problem with -Laplacian Operator

We consider the existence, multiplicity of positive solutions for the integral boundary value problem with φ-Laplacian φ u′ t ′ f t, u t , u′ t 0, t ∈ 0, 1 , u 0 ∫1 0 u r g r dr, u 1 ∫1 0 u r h r dr, where φ is an odd, increasing homeomorphism from R onto R. We show that it has at least one, two, or three positive solutions under some assumptions by applying fixed point theorems. The interestin...

متن کامل

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11020268